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Abstract 

Hydrogen (H2) has been proposed as an alternative energy carrier to re-
duce the carbon footprint and associated radiative forcing of the current en-
ergy system. Here, we describe the representation of H2 in the GFDL-AM4.1 
model including updated emission inventories and improved representation 
of H2 soil removal, the dominant sink of H2. The model best captures the 
overall distribution of surface H2, including regional contrasts between cli-
mate zones, when vd(H2) is modulated by soil moisture, temperature, and 
soil carbon content. We estimate that the soil removal of H2 increases with 
warming (2 to 4% per K), with large uncertainties stemming from differ-
ent regional response of soil moisture and soil carbon. We estimate that H2 

causes an indirect radiative forcing of 0.84 mW m−2/(Tg(H2)yr−1) or 0.13 
mW m−2 ppbv−1 , primarily due to increasing CH4 lifetime and stratospheric 
water vapor production. 
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1 1. Introduction 

2 H2 is being investigated as an energy carrier for applications ranging from 
3 transportation to industry, heating, and energy storage [1, 2, 3, 4, 5]. In-
4 terest for H2 is partly motivated by the reduction in greenhouse gases that 
5 the displacement of fossil fuels by H2 in such applications may afford. For 
6 instance, CO2-free H2 (green hydrogen) can be produced from water elec-
7 trolysis if powered by renewable energy sources [6, 7, 8, 9, 10]. Geological 
8 storage of green hydrogen has been proposed as an avenue to compensate for 
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9 the unpredictabilty and intermittency of solar and wind-generated electricity 
10 [11, 12, 13, 14]. Reduction in the carbon footprint of the H2 produced from 
11 fossil fuels (grey hydrogen), which accounts for 95% of present-day H2 pro-
12 duction [6, 15], may also be achieved via carbon capture and storage (blue 
13 hydrogen, [16]). 
14 Previous studies have shown that a shift to a hydrogen economy would 
15 result in improvements in air quality due to reductions in NOx and CO emis-
16 sions [17, 18, 19, 20]. The impact of higher anthropogenic H2 emissions on the 
17 Earth’s radiative budget is less well understood. While H2 is not radiatively 
18 active, its oxidation tends to increase methane and tropospheric O3, two 
19 potent greenhouse gases [21, 17, 22, 18, 23]. It also increases stratospheric 
20 water, which is accompanied by stratospheric cooling [18, 24, 25, 26, 21]. 
21 To our knowledge, the indirect radiative forcing associated with H2 has only 
22 been quantified using the STOCHEM model [21, 22, 23] with an estimated 
23 H2 greenhouse warming potential over a 100-year time horizon of 5±1 ex-
24 cluding the impact of H2 on the stratosphere. Considering the prospects for 
25 increasing H2 usage, it it is important to assess the gaps in our understanding 
26 of the present-day H2 budget and their implications for the sensitivity of H2 

27 to climate change and the indirect radiative forcing of H2. 
28 Hydrogen (H2) is the second most abundant reactive trace gas in the 
29 atmosphere with a present day global mean concentration of '530 ppbv [27]. 
30 H2 sources include both direct emissions ('35 Tg/yr circa 2000, 30% of which 
31 from fossil fuel combustion), and formaldehyde photolysis ('41 Tg/yr, 55% 
32 of associated with methane) [28]. Atmospheric H2 concentrations exhibit an 
33 hemispheric asymmetry with concentrations in the Northern high latitudes 
34 ' 40 ppbv lower than at the same latitudes in the Southern Hemisphere [28]. 
35 This unique pattern has been attributed to the soil removal of H2, which is 
36 estimated to account for over 80% of H2 removal [27, 28, 29]. 
37 H2 soil removal is thought to be modulated by both the soil diffusivity of 
38 H2 and the activity of hydrogen-oxidizing bacteria. H2 soil diffusivity (Ds) is 
39 well understood [28]. Ds increases with soil temperature but decreases with 
40 soil moisture due to the low solubility of H2. This dependency is broadly con-
41 sistent with the observed sensitivity of soil H2 removal in field and laboratory 
42 experiments [29, 30, 31, 32, 33, 34, 35, 36]. 
43 In contrast, the factors controlling the biological sink are less well un-
44 derstood. Recent studies have demonstrated that the soil removal of H2 is 
45 dominated by high-affinity hydrogen-oxidizing bacteria (HA-HOB, [37, 38]). 

his class of microorganisms differs from low-affinity H2-oxidizing bacteria 46 T
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47 (LA-HOB), which are found near point sources of H2 (e.g., legumes, H2 

48 seepage from underground reservoirs [39, 40]) and are unable to grow us-
49 ing the much lower concentrations of H2 found in the atmosphere [37, 41]. 
50 Many different HA-HOB have recently been identified [42, 43, 44, 45, 46] 
51 and considerable progress has been made in characterizing their metabolism 
52 [47, 41, 48]. However, large uncertainties remain regarding the activity and 
53 spatial distribution of HA-HOB [49]. 
54 In this work, we describe and evaluate the representation of H2 in the 
55 GFDL-AM4.1 global chemistry-climate model focusing on the representation 
56 of the soil sink. We then characterize the simulated response of H2 soil 
57 removal to global warming and the indirect equilibrium radiative forcing of 
58 H2. 

59 2. Method 

60 We use the GFDL AM4.1 model, the atmospheric component of the Earth 
61 System Model 4.1 [50, 51, 52]. The model horizontal resolution is '100 
62 km with 49 vertical levels. The model is run with prescribed sea surface 
63 temperature and sea ice concentration based on reanalysis [53, 54] (AMIP 
64 experiment). 

65 2.1. H2 sources 
66 Sources of H2 include direct emissions and photochemical production from 
67 the photolysis of formadelhyde [28]. H2 is emitted from biomass burning, fos-
68 sil fuel combustion, and nitrogen fixation [28]. Biomass burning emissions 
69 are estimated using dry matter burnt from BB4MIP [55] with emissions fac-
70 tors from Andreae [56] and Akagi et al. [57] (Table S1). We estimate an-
71 thropogenic H2 emissions from CO emissions taken from the Community 
72 Emissions Data System v2017-05-18 [58] using source specific emission fac-
73 tors (Table S2, [28, 59]). The relationship between CO and H2 emissions 
74 reflect the water–gas shift reaction [60] 

CO2 +H2 CO + H2O (1) 

75 H2 emissions associated with terrestrial and marine N fixation are set to 3 
76 and 6 Tg/yr [28] and distributed using the soil and oceanic CO emissions, 
77 respectively. 

Total emissions of H2 over the 1995–2014 period are 32.3 Tg/yr, which 
alls within the range of previous estimates (Table 1). However, there are 
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80 large differences for individual sources. In particular, while our global source 
81 is 8% lower than the estimate of Ehhalt and Rohrer [28], our estimate is 30% 
82 higher for anthropogenic emissions and 40% lower for biomass burning. This 
83 highlights the significant uncertainties in the magnitude of individual sources 
84 of H2 to the atmosphere. 
85 Fig. 1 shows the estimated H2 emissions over the 1850–2014 period. Total 
86 sources have increased by over 50% from preindustrial to present-day. Emis-
87 sions peaked in 1997 (37.1 Tg/yr) due to large biomass burning emissions 
88 associated with a strong El-Niño. From 1995 to 2014, H2 emissions have 
89 decreased, which is primarily driven by a 40% decrease in transportation 
90 emissions. 
91 AM4.1 includes both emission and photochemical production of formalde-
92 hyde. Emissions from anthropogenic sources and biomass burning are from 
93 CEDS v2017-05-18 (2.4 Tg/yr over the 1995–2014 period) and BB4MIP (4.9 
94 Tg/yr), respectively. We do not consider sources of formaldehyde from veg-
95 etation (' 25 Tg/yr [61]). AM4.1 also includes a comprehensive chemi-
96 cal mechanism [52] which accounts for sources of formaldehyde associated 
97 with methane and non-methane volatile organic compounds (NMVOCs) ox-
98 idation. Global mean surface concentration of CH4 is prescribed as lower 
99 boundary conditions for chemistry. Excluding formaldehyde, AM4.1 in-

100 cludes emissions of 10 NMVOCs (ethane, propane, a lunmped higher-alkane 
101 tracer, ethene, propene, isoprene, monoterpenes, methanol, ethanol, and 
102 acetone) from anthropogenic sources (CEDS v2017-05-18), biomass burning 
103 (BB4MIP) and natural sources (Precursors of Ozone and their Effects in the 
104 Troposphere [62]) except for isoprene and monoterpene whose emissions are 
105 calculated interactively in the model using the Model of Emissions of Gases 
106 and Aerosols from Nature (MEGAN v2.1 [63]). The contribution of directly 
107 emitted formaldehyde is much smaller than photochemical production from 
108 methane and NMVOCs (' 1670 Tg/yr). 
109 The photolysis of formaldehyde is calculated using FAST-JX [64]. Chem-
110 ical production over the 1995–2014 period is 42.1 Tg/yr or 56% of the overall 
111 H2 source, in good agreement with previous bottom-up estimates (Table 1). 
112 Tropospheric H2 chemical production increases by 9% (3.6 Tg/yr) over the 
113 1990–2014 period. 

114 2.2. H2 sinks

Sinks of H2 include atmospheric oxidation and dry deposition. AM4.1 
includes oxidation of H2 by OH (k=2.8 × 10−12 exp(−1800/T ) cm3/molec/s) 
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117 and O1D (k = 1.2 × 10−10 cm3/molec/s) following Sander et al. [65]. We use 
118 a two layer model to represent H2 soil removal [31, 66]. In the first layer, 
119 H2 diffuses through an inactive layer which comprises both snow (δsnow) and 
120 dry top soil (δ). In the second layer, H2 is removed by HA-HOB at a rate 
121 ks. Assuming that H2 is at steady state in the soil, the surface removal of H2 

122 can be expressed following Ehhalt and Rohrer [66] as: 

1 
vd(H2) = (2)

δ δsnow 1√+ +
Ds Dsnow DsksΘa 

123 This parameterization will be referred to as Ehhalt, hereafter. The soil 
124 diffusivity of H2 (Ds) is calculated following Millington and Quirk [67]. 

Θ3.1 

Ds = Da · a (3)
Θ2 

p 

125 where Θp, Θa and Da are the soil porosity, the soil air fraction (cm3 air 
126 filled pores/cm3 soil) and the diffusivity of H2 in air [31] averaged over the 
127 first 10 cm, respectively. Snow diffusivity (Dsnow) is set to 0.64 Da, using the 
128 average of fresh and aged snow diffusivity [68]. δ decreases with soil moisture 
129 following Ehhalt and Rohrer [66]. ksΘa is expressed as: 

ksΘa = Af(Θa)g(Ts) (4) 

130 where the dependence of ks on soil moisture (f(Θa)) and soil temperature 
131 (g(Ts)) are calculated following Ehhalt and Rohrer [66]. A reflects the abun-
132 dance and activity of HA-HOB. A is adjusted such that the average land 
133 deposition velocity is 0.035 cm/s over the 1989-2014 period. As we will show 
134 in section 3.2, this value provides a reasonable fit to surface H2 observa-
135 tions. We assume that H2 surface removal is solely controlled by its soil 
136 removal, i.e, we neglect the aerodynamic and laminar resistances, which are 
137 both much smaller than the soil resistance [69]. Our global estimate is simi-
138 lar to Yashiro et al. [70] at vd = 0.033 cm/s but much slower than Sanderson 
139 et al. [71] (0.053 cm/s). Note that the dependence of vd on soil moisture is 
140 non-monotonic, which is consistent with parameterizations used to represent 
141 the microbial removal of gases such as carbon monoxide, methane, and car-
142 bonyl sulfide [72, 73, 74]. This differes from previous global studies [75, 70], 

hich assumed no dependence of ksΘa when the fraction of soil pores filled 
ith water exceeds 15% following Smith Downey [76]. As in previous work, 
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145 the Ehhalt parameterization assumes that a mimimum level of soil water is 
146 required to activate HA-HOB. The magnitude of this threshold is uncertain, 
147 with estimates ranging from 2 to 8% [75, 76, 66]. 
148 Dry deposition is the most important sink of H2 in AM4.1, accounting 
149 for over 70% of the tropospheric removal of H2. This is in good agree-
150 ment with previous bottom-up estimates but lower than top-down estimates 
151 ( 80%). Yashiro et al. [70] attributed this discrepancy to biases in the top-
152 down estimates due to the limited spatial coverage of measurements and 
153 oversimplification of the H2 budget. 

154 3. Evaluation 

155 3.1. Dry deposition velocity 

156 We use the monthly land properties simulated by LM4.1 (Shevliakova 
157 et al., 2020), the land component of the GFDL Earth System Model 4.1 
158 (ESM4.1) averaged over the top 10 cm in the AMIP simulation as inputs to 
159 calculate vd(H2). Fig. 2 shows the spatial pattern of H2 deposition velocity 
160 simulated using equation (2). vd(H2) is maximum in North Africa and the 
161 Arabian Peninsula. In these regions, soil moisture is low, which results in 
162 high H2 soil diffusivity, but remains high enough to exceed the threshold for 
163 microbial activity. vd(H2) is minimum at high latitudes, where low temper-
164 ature and snow cover tend to inhibit the soil removal of H2. Soil removal is 
165 also low in tropical rain forests as high soil moisture tends to reduce both H2 

166 soil diffusivity and microbial consumption. 
167 Comparison with field observations (Fig. 3) shows that the model cap-
168 tures the seasonality and magnitude of vd(H2) well at Harvard Forest (a), 
169 Gif-sur-Yvette (b), and Helsinki (d). However, it underestimates vd(H2) at 
170 Tsukuba (c), Mace-Head (e), and Heidelberg (g). At all these sites, the simu-
171 lated H2 removal is strongly inhibited by high soil moisture. In contrast, the 
172 model tends to overestimate vd(H2) at the California desert site in summer, 
173 when soil moisture is lowest (f) . 
174 Model biases at sites (c) and (e-g) are consistent with a high bias in the 
175 soil moisture, used to estimate vd(H2). Such bias may be associated with 
176 temporal or spatial heterogeneities in soil moisture that are not captured 
177 in the LM4.1 monthly model output. Reducing the volumetric soil water 
178 content by 0.06 uniformly significantly improves the model performance by 

ncreasing removal in temperate and tropical regions (higher soil H2 diffusiv-
ty) and reducing summer time deposition in deserts. Globally, the largest 
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181 difference is found in deserts, where the reduction in soil moisture results in 
182 more frequent inhibition of H2 consumption by HA-HOB (Fig. 2). A similar 
183 correction was applied by Yashiro et al. [70], who applied a uniform correc-
184 tion of 0.22 to volumetric soil water content in the CHASER model to obtain 
185 a reasonable simulation of H2. This parameterization will be referred to as 
186 Ehhalt M. 
187 Another possible source of bias is the geographical distribution and ac-
188 tivity of HA-HOB. Here we assume that HA-HOB are distributed homoge-
189 neously, i.e., we do not modulate HA-HOB abundance by microbial biomass, 
190 an output of the LM4.1 model. This reflects recent studies that found that 
191 a) HA-HOB account for a very small portion of microbial biomass (<1% 
192 [49]) and b) HA-HOB are present in environments where nutrients are lim-
193 iting [77, 78, 47]. Clearly, more research is needed to understand the spatial 
194 distribution of HA-HOB. 
195 As described earlier, the activity of HA-HOB is modulated by soil wa-
196 ter content and soil temperature. Recent studies [49] also show that HA-
197 HOB activity scales like organic soil carbon content. In order to quantify 
198 the impact of such modulation, we assume that A depends on soilC fol-

soilC 
199 lowing a Michaelis-Menten relationship ( A = α ). We select a high

β+soilC 

200 β = 7kgC/m3 , such that vd(H2) dependence in soilC is linear in most en-
201 vironments consistent with observations [49]. α is adjusted to yield the 
202 same deposition velocity as the Ehhalt parameterization over the 1989–2014 
203 period. This parameterization will be referred to as Ehhalt MC. Fig. 2 
204 shows that modulation by soilC leads to faster deposition in the tropics and 
205 high latitudes and slower deposition in arid regions. However, the Ehhalt M 
206 and Ehhalt MC parameterizations are largely indistinguishable at the mid-
207 latitude locations for which we have extended measurements of vd(H2) (Fig. 
208 3) 
209 We also consider the parameterizations of Price [79] and Sanderson [71]. 
210 The Price parameterization assumes the same deposition velocity for all soil 
211 types. Soil removal is reduced at low temperature (T < 0◦C). The Sanderson 
212 parameterization uses ecosystem-specific deposition velocities based on field 
213 observations. A dependence of H2 on soil moisture is considered for certain 
214 ecosystems (agriculture, savannah, forest, grassland) but no dependence on 
215 temperature. Both the Price and Sanderson parameterizations account for 
216 the inhibition of soil H2 removal in the presence of snow. To facilitate com-
217 parisons, we scale the simulated annual global deposition velocity from both 
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218 schemes to yield the same value as the Ehhalt M parameterization over the 
219 1989–2014 period. 
220 Fig. 3 shows that the Price scheme captures best the small spread in 
221 maximum vd(H2) across sites but underestimates the seasonality of vd(H2). 
222 It is the only parameterization that captures the elevated vd(H2) at Mace 
223 Head and Tsukuba (Fig 3c and e), where both the Ehhalt and Sanderson 
224 parameterizations exhibit too much inhibition by high soil moisture. The 
225 performance of the Sanderson scheme is largely consistent with that of the 
226 Ehhalt-based parameterizations. The Sanderson scheme tends to underesti-
227 mate the seasonality of vd(H2) at Harvard forest (a) and Helsinki (d), which 
228 may reflect the lack of temperature dependence. The complete inhibition of 
229 H2 deposition in deserts in the Sanderson scheme is not supported by obser-
230 vations collected by Smith-Downey et al. [33] (shown in Fig. 3f) and Conrad 
231 and Seiler [29]. 
232 Fig. 2 shows that the largest regional differences between the different pa-
233 rameterizations of vd(H2) are found in the subtropics, where the Ehhalt MC 
234 and Sanderson schemes show depressed removal, consistent with previous 
235 simulations by Morfopoulos et al. [75] and in tropical regions, where high 
236 moisture reduces H2 soil removal in the Ehhalt and Ehhalt M scheme. In 
237 contrast, Yashiro et al. [70] simulations suggest that the fastest soil removal 
238 for H2 occurs in tropical regions. The increase in vd(H2) in tropical regions 
239 in Ehhalt M relative to Ehhalt suggests that differences between the spatial 
240 distribution of vd(H2) across models can be largely ascribed to differences 
241 in soil moisture and its impact on HA-HOB activity. As we will discuss in 
242 Section 4.1, uncertainties regarding the relative deposition velocity of H2 in 
243 tropical and subtropical environments have important implications for the 
244 sensitivity of H2 removal to global warming. 

245 3.2. Surface concentration 

246 Fig. 4 shows the seasonal distribution of surface atmospheric H2 concen-
247 trations in AM4.1. Here, we prescribe monthly vd(H2) using the Ehhalt MC 
248 parameterization as described in section 3.1. Observations from NOAA 
249 Global Monitoring Laboratory [27], the Advanced Global Atmospheric Gases 
250 Experiment (AGAGE [80]) and the Commonwealth Scientific and Industrial 
251 Research Organisation (CSIRO [81]) are shown as colored diamonds. CSIRO

and AGAGE observation use the Max Plank Institute calibration [82], while 
NOAA observations follow Novelli et al. [27]. The NOAA calibration is less 
stable, which may introduce biases [82]. At the Cape Grim, Alert, and 
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255 South Pole stations, we find that H2 from NOAA is on average 1.9% lower 
256 than CSIRO observations and we apply this correction factor for all NOAA 
257 observations. 
258 Observations indicate that H2 surface concentrations are lowest in fall in 
259 the Northern middle and high latitudes, a pattern that is well captured by 
260 the model with seasonal biases and R2 ranging from 0.5 to 8.3 ppbv and 0.51 
261 to 0.83, respectively (Fig. S1). Because of H2 long lifetime, the model perfor-
262 mance largely reflect the regional distribution of H2 sources (e.g., high emis-
263 sions in China) and the degree of isolation of each site from oceanic influence 
264 (low concentrations over central Asia) rather than the regional variability in 
265 the soil removal of H2. This is illustrated in Fig. 5, which shows that the 
266 Price parameterization captures differences in observed H2 surface concentra-
267 tions across climate zones well even though vd(H2) is constant outside of the 
268 high latitudes. However, the Ehhalt MC parameterization reduces the model 
269 low-bias in hot deserts (BWh), Mediterranean hot summer climate (Csa) and 
270 hot semi-arid climates (BSh). This provides additional support for the in-
271 hibition of H2 removal in arid climates. We note that the Ehhalt M shows 
272 much less improvements in these regions (Fig. 5), consistent with the lack 
273 of inhibition of microbial activity by soil moisture in these regions (Fig. 2). 
274 This results in slightly worse performances overall relative to the Ehhalt MC 
275 parameterization (Fig. S1). Regardless of the parameterization, AM4.1 over-
276 estimates the low concentrations of H2 observed at the KZD (Kazakhstan), 
277 UUM (Mongolia), and UTA (Western United States) sites especially in DJF 
278 (mean bias > 50 ppbv). More observations are needed to understand the 
279 processes that control H2 removal in these continental and arid regions. 
280 NOAA observations are not available after 2005 because of the aforemen-
281 tioned calibration issues and we have focused our evaluation on the long-term 
282 climatology of surface H2 concentrations. However, we note that the decrease 
283 in transportation emissions discussed previously causes a small decrease in 
284 H2 surface concentration at Northern Hemisphere sites over the 2000–2014 
285 period. This decrease is not supported by CSIRO observations at Mace Head 
286 and Alert (not shown). Because of the unavailability of NOAA observations 
287 (which account for over 80% of the surface sites) after 2005, it is not possible 
288 to assess whether this discrepancy is robust. However, we note that several 
289 factors could counteract the simulated decline in H2 emissions, including a) 

changes in the H2 emission factor relative to CO due to changes in engines 
and fuel mix [83, 59] and b) 1–4% leakage [83] of industrial H2 (primarily for 
NH3 and methanol production) for which demand has increased by 60 Tg/yr 
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293 from 1990 to 2015. 

294 4. Discussion 

295 4.1. Sensitivity of H2 deposition velocity to climate change 

296 To estimate the sensitivity of the soil removal of H2 to climate change, we 
297 calculate vd(H2) using monthly soil properties simulated by ESM4.1 under 
298 different forcing scenarios: 1) a 1%/yr increase in CO2 concentration relative 
299 to preindustrial conditions (1pct) and 2) the historical evolution of natu-
300 ral and anthropogenic forcings (Historical) extended up to 2100 using the 
301 Shared Socioeconomic Pathways scenario 3-7.0 (SSP3-7.0). The SSP3-7.0 
302 scenario is characterized by high emissions of well-mixed greenhouse gases 
303 and short-lived climate forcers as well as substantially high land use by 2100 
304 [84]. The historical and 1pct experiments are part of the DECK (Diagnostic, 
305 Evaluation and Characterization of Klima) for the Coupled Model Intercom-
306 parison Project phase 6 (CMIP6). The SSP3-7.0 experiment is part of the 
307 ScenarioMIP project [85]. 
308 Fig. 6 shows the simulated response of vd(H2) relative to preindustrial 
309 conditions. vd(H2) is simulated to increase by 1.9 to 4.3%/K depending on 
310 the forcing scenario and vd parameterization. Using the Ehhalt M parame-
311 terization, the increase in vd(H2) is largely insensitive to the forcing scenario 
312 (1.9–2.7%/K). This is similar to the responses simulated with the Sanderson 
313 (1.6–2.1%/K) and Price (1.4%/K) parameterizations (not shown). Region-
314 ally, vd increases over most of the Northern midlatitudes and in the tropics 
315 but decreases in the subtropics (Fig. S5). Changes in the tropics and subtrop-
316 ics are due to dryer soils (Fig. S2). In the tropics, drying tends to increase 
317 H2 removal, both through faster diffusivity and greater HA-HOB activity. In 
318 the subtropics, the faster diffusivity is more than compensated by reduced 
319 microbial activity, as the minimum soil moisture threshold for microbial ac-
320 tivity is less frequently met. In the Northern mid and high latitudes, the 
321 increase in vd(H2) is dominated by greater HA-HOB activity associated with 
322 higher temperature. In some regions (e.g., Central Europe), the increase in 
323 soil moisture causes vd(H2) to decrease. We note that the response of soil 
324 liquid and total water content to warming in ESM4.1 is qualitatively similar 
325 to the multi-model median from CMIP6 (Figs S3 and S4), which suggests 
326 that the regional trends discussed above are robust. One notable excep-
327 tion is Central Europe, where ESM4.1 shows larger increase in soil moisture 
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328 than the CMIP6 median, which would result in stronger inhibition of H2 soil 
329 removal. 
330 The magnitude of the response of vd(H2) to warming is more sensitive to 
331 the forcing scenario when the Ehhalt MC parameterization is adopted. In 
332 the 1pct experiment, vd exhibits a stronger response to warming than under 
333 the Ehhalt M parameterization (4.3%/K vs 1.9%/K). This reflects the distri-
334 bution of soil C, which tends to amplify the increase of vd(H2) in the tropics 
335 and Northern midlatitudes, while dampening its decrease in the subtropics. 
336 However, under the hist ssp scenario, the sensitivity of vd(H2) to warming is 
337 reduced by 35% (2.8%/K). The reduced sensitivity reflects the decrease in 
338 soil C associated with land-use change in the midlatitudes, which counteracts 
339 the increase of vd(H2) associated with changes in soil moisture and tempera-
340 ture. This highlights the need to understand how HA-HOB activity may be 
341 modulated by anthropogenic activities (e.g., agriculture, irrigation). More 
342 broadly, more research is needed to understand how HA-HOB spatial distri-
343 bution and the sensitivity of HA-HOB activity to environmental parameters 
344 (e.g., soil temperature and moisture and labile carbon), both of which are 
345 assumed constant here, may also be altered by climate change. 

346 4.2. Indirect radiative effect of H2 

347 H2 indirectly modulates Earth’s radiative balance. First, H2 oxidation 
348 increases the lifetime of methane, a potent greeenhouse gas, by depleting 
349 its primary oxidant, OH. Second, the oxidation of H2 produces HO2 radicals, 
350 which reacts with NO to produce tropospheric O3, a pollutant and greenhouse 
351 gas. Finally, H2 oxidation is a source of stratospheric water, which tends to 
352 cool the stratosphere, an additional positive forcing. 
353 Here, we use AM4.1 to estimate the Effective Radiative Forcing (ERF) 
354 of H2. In the reference simulation (REF), AM4.1 is run for 50 years with re-
355 peating emissions, SST and SIC based on 2010 conditions. Monthly vd(H2) is 
356 based on the Ehhalt MC parameterization averaged over the 1995–2010 pe-
357 riod. We then perform a perturbation experiment in which H2 anthropogenic 
358 emissions are increased by 200 Tg/yr. This experiment will be referred to as 
359 HIGH H2. To put the magnitude of this perturbation in context, we com-
360 pare it with different scenarios for future H2 demand. Derwent et al. [22] 
361 estimated that a complete replacement of fossil fuels under present-day con
362 ditions would require 2500 Tg/yr of H2. An additional 200 Tg/yr would thus 

amount to an 8% leakage rate. This is likely an upper bound with litera-
ture estimates ranging from 0.3% to 10% [83, 19]. More realistic scenarios 

363 
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365 suggest an increase in anthropogenic H2 production of up to 550 Tg/yr by 
366 2050 [86, 87, 1]. Assuming a high leakage rate of 10%, such transition to a 
367 hydrogen economy would result in an increase in anthropogenic H2 emissions 
368 ' 25% that considered here. 
369 We find that the increase in anthropogenic H2 emissions is accompanied 
370 by a 7% decrease in tropospheric OH and an 8% increase in CH4 lifetime. 
371 As CH4 surface concentration is prescribed in AM4.1, the increase in CH4 

372 concentration associated with higher H2 emissions is not accounted for in 
373 the HIGH H2 simulation. Following West et al. [88] and Fiore et al. [89], we 
374 estimate the long-term change in CH4 concentration as � �F

τp
[CH4]p = [CH4]0 (5)

τ0 

375 where τ and [CH4] are the lifetime and concentration of methane, respectively 
376 and F is the methane feedback lifetime parameter. We use the subscripts 0 
377 and p to denote the REF and HIGH H2 experiments, respectively. F = 1.3 
378 in AM4.1 [90] with literature estimates ranging from 1.25 to 1.45 [89, 90]. 
379 To estimate the overall H2 ERF, we perform another experiment in which 
380 anthropogenic emissions of H2 are increased by 200 Tg and surface CH4 is 
381 increased from [CH4]0 = 1808 to [CH4]p = 2005 ppbv. This experiment will 
382 be referred to as HIGH H2 CH4 hereafter. 
383 H2 burden is 3.48× greater in HIGH H2 CH4 relative to the REF simu-
384 lation, which is 3% less than the increase in H2 source. This small negative 
385 feedback is attributed to the larger response of surface H2 concentrations 
386 (3.58×), which favors soil removal. This change in the vertical distribution 
387 of H2 results in a 3% decrease in H2 lifetime in spite of decreasing tropospheric 
388 OH (-9%). 
389 The simulated response of H2 burden to increasing H2 emissions does not 
390 consider possible changes in vd(H2). To our knowledge, the sensitivity of HA-
391 HOB to small (< 5×) perturbations in H2 concentrations has not been quan-
392 tified, with previous studies focusing on much larger perturbations (1000× or 
393 more) such as those associated with legumes [40] or seepage of deep H2 

oirs [39]. In general, the activity of HA-HOB scales like [H2]/([H2] + Km), 
here Km is the half saturation of HA-HOB. If [H2] � Km, the magnitude of 
he soil sink will not increase in response to higher H2 emissions and [H2] con-
entration would increase more than 10× in the HIGH H2 CH4 experiment. 
owever, such saturation seems unlikely as reported Km for HA-HOB are 

reser-
394 v
395 w
396 t
397 c
398 H
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399 more than 50× the present-day concentration of H2 [41]. Higher H2 emission 
400 may also favor HA-HOB growth, which could lead to an increase in vd(H2) 
401 thus dampening the atmospheric response of atmospheric H2 to higher an-
402 thropogenic emissions. Furthermore, as noted in the previous section, our 
403 model suggests vd(H2) will increase in future decades as the planet warms. 
404 Clearly more laboratory and field experiments are needed to characterize the 
405 response of HA-HOB to realistic perturbations in atmospheric H2 that may 
406 arise due to the development of a hydrogen economy. 
407 The increase in H2 emissions results in higher tropospheric O3 (+1.3 DU 
408 and Fig. 7a) and higher stratosphere water (Fig. 7b) (+4.9%). The spatial 
409 pattern and magnitude of the increase in stratospheric water vapor is con-
410 sistent with the results of Warwick et al. [91], who reported an increase of 
411 3.4% for a 2.5× perturbation to surface H2 concentration. ESM4.1 shows 
412 little response in stratospheric O3 (+0.4%, Fig. 7b). In particular, we find 
413 that the increase in H2 emissions causes little change in polar stratospheric 
414 clouds and stratospheric O3 depletion. This agrees well with previous studies 
415 suggesting H2 is unlikely to cause large changes in stratospheric O3 [91, 25]. 
416 We estimate that an increase in H2 emissions of 200 Tg/yr causes a pos-
417 itive radiative forcing of +0.17 W m−2 , based on the change in the radiative 
418 imbalance at the top of the atmosphere in the HIGH H2 CH4 experiment 
419 relative to the REF experiment. In order to understand the relative contri-
420 bution of changes in methane, ozone, and water vapor to H2 ERF, we perform 
421 off-line radiative transfer calculations. We place the global mean perturba-
422 tion of methane, stratospheric water, stratospheric ozone in to the radiation 
423 code that contains an estimate of the global mean atmospheric state and 
424 account for stratospheric temperature change using fixed-dynamical heating 
425 calculations (FDH) [92]. Following Myhre et al. [93] and Etminan et al. [94] 
426 the adjustment due to stratospheric cooling for each forcing scenario is cal-
427 culated by adding a fixed heating term (equal in magnitude, but opposite in 
428 sign to present-day cooling rates) to all points in the stratosphere, and then 
429 iterating an offline radiative transfer model (in this case RTE+RRTMGP, 
430 see Pincus et al. [95]) until the stratospheric temperature reaches equilib-
431 rium. We estimate that methane, tropospheric ozone, stratospheric ozone, 
432 and stratospheric water contribute 46%, 21%, 5%, and 28% to H2 ERF. One 
433 third of H2 ERF is associated with the stratospheric response, mainly due to 
434 cooling and increased greenhouse trapping in the lower stratosphere associ-
435 ated with greater water vapor production (from both CH4 and H2 oxidation). 
436 Assuming linearity, this suggests an ERF efficiency of 0.84 mW m−2/(Tg yr−1) 
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437 or 0.13 mWm−2/ppbv. Recent CMIP6 estimates of the Earth’s climate sen-
438 sitivity, i.e., the long-term increase in temperature induced by a doubling of 
439 CO2 (ERF=3.98 W m−2 [96]) range from 2.29K to 5.64K with an average of 
440 3.8K [97, 98]. Assuming that the radiative forcing induced by H2 has the 
441 same efficacy as the radiative forcing from CO2 [99], we estimate that a sus-
442 tained 50 Tg/yr increase in the anthropogenic emissions of H2 (a pessimistic 
443 scenario, as discussed earlier) would result in 0.04 K (0.025–0.059K) increase 
444 in global surface temperature. 

445 Conclusion 

446 We have described and evaluated the representation of H2 in the GFDL 
447 AM4.1 model. Our simulated global budget is consistent with previous 
448 bottom-up inventories with similar contributions of photochemical and sur-
449 face emissions to the overall source of H2. Large uncertainties are however 
450 noted regarding the magnitude of anthropogenic and biomass burning H2 

451 emissions. Comparison between different representations of soil H2 consump-
452 tion, the dominant removal mechanism for atmospheric H2, shows consider-
453 able differences in the tropics and subtropics, which reflect uncertainties in 
454 soil moisture and the sensitivity of HA-HOB activity to soil moisture and 
455 soil carbon. This highlights the need for long-term observations of vd(H2) 
456 and H2 concentration in tropical forests and arid regions. 
457 We estimate that vd(H2) exhibits a positive sensitivity to warming (1.9– 
458 4.3%/K). Regionally, dryer soils result in faster removal of H2 in tropical 
459 regions but slower removal in the subtropics. More work is needed to under-
460 stand how the spatial distribution and activity of HA-HOB may be altered by 
461 changes in environmental conditions including increasing H2 concentration. 
462 We estimate that the H2 ERF efficiency is 0.84 mW m−2/(Tg yr−1) or 
463 0.13 mW m−2/ppbv. The magnitude of this feedback is primarily controlled 
464 by changes in methane and stratospheric water vapor with smaller contribu-
465 tion from increasing tropospheric ozone. The importance of CH4 highlights 
466 the benefits of controlling CH4 emissions to minimize the radiative forcing 
467 associated with increasing H2 usage. 
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aTable 1: Global tropospheric budget of H2 

Source 
Emission 
Anthropogenic 
Biomass burning 
Nitrogen fixation 
Soil 
Ocean 

Chemical production 

Tropospheric loss 
Dry deposition 
Chemical loss 

Tropospheric burden [Tg H2] 
Tropospheric lifetime [years] 

This work Other estimatesb 

32.3 [29.9–37.1] 
14.3 [13.4–15.8] 

9 [7.3–12.6] 
9 
3 
6 

42.1 [40.7–43.3] 

54.7 [53.5–56.3] 
20.4 [19.5–20.9] 

157.4 [154.5–162.3] 
2.1 

28–48 
11–25 
8–20 

1–11 
3–6 

30–41b , 64–77c 

55–60b , 85–88c 

15–19 

136–157 
1.9–2.3b , 1.4c 

a Tg/yr over the 1995–2014 average. The range is indicated in bracket. b 

from bottom-up estimates [27, 100, 71, 101, 69, 102, 28, 70, 103, 104, 56]. c 

from top-down estimates [101, 102] 
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Figure 1: Historical H2 emission 
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Figure 2: Simulated annual H2 deposition velocity averaged over the 1989-2014 period 
based on (a) Ehhalt and Rohrer [66] (equation 2), (b) Ehhalt and Rohrer [66] with global 
soil moisture adjustment (Ehhalt M), (c) Ehhalt and Rohrer [66] with global soil moisture 
and organic soil C adjustment (Ehhalt MC), (d) Sanderson et al. [71], (e) Price et al. [69]. 
Panel (f) shows the meridional distribution of H2 deposition velocity. 
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Figure 3: Comparison between simulated and observed H2 deposition velocity at (a) Har-
vard Forest (temperate forest [36]), (b) Gif-sur-Yvette (pasture [105], (c) Tsukuba (agri-
cultural land [31]. (d) Helsinki (forest, [106]), (e) Mace Head (peat, [107]) (f) San Jacinto 
Mountain Reserve (desert, [33]), (g) Heidelberg (semi-urban, [108]) 18 



Figure 4: Seasonal maps of modeled surface H2 dry mixing ratios (ppbv) averaged over 
the 1995-2005 period using the Ehhalt MC parameterization. Observations from NOAA, 
CSIRO, and AGAGE are shown as colored diamonds. Both models and observations are 
averaged over the 1995–2005 period. 
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Figure 5: Observed and simulated H2 grouped by climate zone over the 1992-2014 period. 
The box shows the quartiles of the dataset while the whiskers extend to show the rest of 
the distribution. Outliers are indicated by dots. The numbers of sites contributing to each 
climate zone is indicated. climate zone Af : Tropical rainforest climate, Am: Tropical mon-
soon climate, Aw : Tropical savanna climate with dry-winter characteristics, BSk : Cold 
semi-arid climate, BSh: Hot semi-arid climate, BWh: Hot desert climate, BWk : Cold 
desert climate, Csa: Mediterranean hot summer climates, Csb: Warm-summer Mediter-
ranean climate, Cfa: Humid subtropical climate, Cfb: Oceanic climate, Cfc: Subpolar 
oceanic climate, Dfa: Hot summer continental climates, Dfb: Warm summer continen-
tal or hemiboreal climates, Dfc: Subarctic climate, Dwc: Monsoon-influenced subarctic 
climate, EF : Ice cap climate, ET : Tundra climate 
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Figure 6: Simulated change in the global average H2 deposition velocity with tempera-
ture under CO2-forcing (solid lines) and historical and projected forcing (hist ssp (dash 
line)) scenarios. The sensitivity of vd(H2) to warming from the Ehhalt M and Ehhalt MC 
parameterizations are shown in blue and orange, respectively. 
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Figure 7: Simulated change in temperature (a), water vapor (b), and  O22 3 (c) in response 
to a 200 Tg/yr increase in H2 emissions. 
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1044 Supporting materials 

Table S1: H2 emission factor for biomass burning in g/kg of dry matter 

Ecosystem EF(H2) 
Savanna  1.7a

Boreal  2.03b

Temperate  2.03a

Tropical forest  3.36a

Peatland  1.2c

Agricultural  2.59a

a from Akagi et al. [109] 
b assuming the same emission factor as temperate forest 
c from Andreae [56] 

1 



Table S2: Emission factor for anthropogenic emissions 

Sector EF(H2)/EF(CO) 
Agriculture 
Energy 
Industrial 
Transportation 
Residential 
Solvents 
Waste 
International Shipping 

0.0357 
0.0143 
0.0143 
0.0357 
0.0217 
0.0143 
0.005 
0.0357 

a 

b 

b 

a 

c 

b 

d 

a 

a based on [59] gasoline EF, b based on Ehhalt and Rohrer [28], c based on 
[56] biofuel EF, d based on Vollmer et al. [59] waste EF 

2 



Figure S1: Comparison between seasonally averaged H2 terrestrial observations and sim-
ulations performed with the Ehhalt M (filled circle) and Ehhalt MC parameterizations 
(open circle). Observations from CSIRO, AGAGE, and NOAA are seasonally averaged 
over the 1992–2014 period. Seasonal mean bias (MB) and squared correlation coefficient 
(R2) are indicated for Ehhalt M (top) and Ehhalt MC (bottom). 
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Figure S2: Simulated change in soil liquid fraction (a), temperature (b), and organic 
carbon content (c) normalized by the temperature change for a CO2 doubling. Changes 
are averaged over the soil top 10 cm. 4 
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Figure S3: Same as Fig. S2 for the moisture in the upper 10 cm of the soil for the median 
of 22 CMIP6 models (a) and in ESM4.1 (b). Dots indicate regions where at least 17 
models agree on the sign of the trends. 
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Figure S4: Same as Fig. S2 for liquid water in the upper 10 cm of the soil for the median 
of 9 CMIP6 models (a) and in ESM4.1 (b). Dots indicate regions where at least 7 models 
agree on the sign of the trends. 
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Figure S5: Change in H2 deposition velocity associated with a 2K warming relative 
to preindustrial conditions. Panels (a) and (b) show the response of vd(H2) using the 
Ehhalt M and Ehhalt MC parameterization under a 1%/yr increase of atmospheric CO2. 
Panels (c) and (d) show the response of vd(H2) using the Ehhalt M and Ehhalt MC pa-
rameterizations in the historical and SSP3-7.0 scenarios. 

7 


	Global modeling of hydrogen using GFDL-AM4.1: sensitivity of soil removal and radiative forcing
	Global modeling of hydrogen using GFDL-AM4.1: sensitivity of soil removal and radiative forcing 
	1. Introduction
	2. Method
	3. Evaluation
	4. Discussion
	Conclusion

	References



